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coupled transmission lines. (b) Capacitances per unit
Iengthof thelifiesof Fig. l(a).
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Fig. 2. (a) Network consisting of n – 1 pairs of coupled lines. (b)
Capacitances per unit length of the lines of Fig. 2 (a).

Ii+l,.l = –jv, cot (e) Yol~+l/2 1,+1,.2 =jvzcot (c)Y-o,’+’/2

Il+l,bl = jVIYOl*+’/ (2 sin (0) li+~,~’= –jV,Y0,’+’/(2 sin(0))

l;-,,=l = –jvl cot (e) Yol~-1/2 Ii-l,a’ =jvl cot (e) Yo2’-’/2

li_~,~’ = jV,YOl’-’/ (2 sin (f?)) Ii-,,~2= –jV,Y0,i-1/(2 sin (0))

(4)

where Ij,.l is the current in thejv node for mode 1 excitation and
similarly Ii,.j is the current in the @ node for mode 2 excitation.
Equation (2) then yields, whenp = –jcot (0) andt =sec(tl),

yi,$~ = –jCot (6’) (YOl~ + Y02’)/2 = ?(ci+ct-l,i +c,,i+l)p

!Jiia’b = ~(YO1’+ Y02t)/(2 sin (0)) = ‘V(C. +C&l.i+Ci,i+l)~t

yi,i+la.. = jcot (e)(Yo2~+1– YO1’+’)/2 = –V(c,, i+l)p

vi ;+1G,5 = –j(YO*’+l – YOl$+lj/(2 sin (0)) = .( Cz.l+l)pt

yi,i-p,” =j cot (0)( Y02$–1 – Yol~–1)/2 = –v(c*_l,i)p

yi,%_l.J b –j(Yo2~–1 – YO1’-1)/(2 sin(@)) =v(C, _,,, )pt. (5)

We see from (3) that if j i –jl is greater than 1 that YOl~ = YOZ~

and hence superposition of mode 1 and mode 2 excitation yields
zero current, and y,,i~, w = O. We find using (5), reciprocity and the
symmetry of thenetworkj that theadmittance matrix is thatof (1)

where

y,, =V(cl+cfi)

Y., = V(CZ-l,*+C, +C$,t+l)

y.. = .(cn +C.-l,fi)

Yi, i+l = –Vc,,,+l. (6)

REFERENCES

A Useful Identity for the Analysis of a Class of

Coupled Transmission-Line Structures

A. I. GRAYZEL

Absfracf—In this letter an identity is proven which allows easy

analysis of many coupled traiwmission-line structures.

Inthisletter wewillprove the followiugtheorern: if only nearest
neighbor couplings are considered n commensurate-coupled trans-
mission lines can be reduced to a network consisting of n — 1 paire

of coupled lines.
To prove thk theorem we will prove that the network of Fig. 1

and the network of Fig. 2 are equivalent. In Fig. l(a) is shown a
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Fig. 3. (a) Loaded interdigital filter. Shunt and mutual capacitances
ppr.unit length as indicated. (b) Equivalent circuit of .Fig. 3(a) con-
slstmg of two pairs of coupled lines. (c) Network eqmvalent to the
network of Fig. 3(b), (d) Network equivalent to the network Of
Fig. 3 (c).

network consisting of n coupled lines. The capacitances per unit

length between coupled lines and shunt capacitances to ground are

shown in Fig. l(b). In Fig. 2(a) is shown a network consisting of
n — 1 pairs of coupled lines. The capacitances per unit length

between the pairs of coupled lines and shunt capacitances to ground
are shown in Fig. 2(b). These pairs of coupled lines are connected
to 2n nodes as shown in Fig. 2(a). We will now show that the net-

work of Fig. 1 and that of Fig. 2 are exactly equivalent when

c,’ +(7/’ = (L, ~ = 2,3, . . ..n —l. (1)

(It should be noted that C,, C., and C; i+, are the same for both net-

works. )

Weshall prove th~identity byshowingthatthe2n X2n admit-
tance matrix of the network of Fig. 1 is identical to that of Fig. 2.

Let us define the current, voltage, andadmittance matrices by the
matrix equation

11s 1 h 1
Il. %

12, = [y,,u.v] v,. .

“1 “1

(2)

. .

. .

zn!J %

Iiv is the current flowing into node jv, where j ranges from 1 ton and
vieequal toeitherzor~. Similarly, Vluis thevoltage between node

iu and the ground planes.
It is shown in [2] and [6] that the admittance matrix of the

network of Fig. 1 is given by

r ‘w — yllt !/12 —yl,t o

I Y12 –yut Y22 –t/22t !/23

I -Ypt Yn --yd y,, -y,,t
I

[Yi,””l = p o 0 V23 – y23t Ya3

o 0 – Yd Y28 – Yd
. . . .
. . . . .
. . . .

0 0 00 0

where (see [6])

Y1l= IJ(cl + C12)

y,i = v(Ci, J-1 + Ci + Ct,,+l), i = 2,3,. ..,n — 1

y.. = V(cn-l, n + c’.)

Yi!i+l = —Pci, i+l, ~=19 ,U, . . ..n –1

p= –jcOte

t = sec 6’. (4)

It is shown in the Appendix that the admittance matrix of Fig. 2 is

also given by (3) when the condition of (1) is satisfied. This com-
pletes the proof.

This identity is extremely useful for analyzing many interdigital
structures. Consider the network of Fig. 3 (a). Using the previous
identity we can redraw the network as shown in Fig. 3(b) and (C).
Using the equivalent circuits given in [3] we see that this network

is equivalent to the network of Fig. 3 (d). All of the equivalent
circuits given in [4] can be derived by similar techniques and are

immediately obvious. Further, given any group of coupled lines
with one of the interior lines short circuited, such as shown in Fig.

4(a), one can always divide the group into two groups of coupled

lines as shown in Fig. 4 (b).

APPENDIX

The four-by-four admittance matrix of two coupled lines is given

by (3) when n is set equal to 2. The matrix is given by
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Fig. 4. (a) Interdigital structure with shunt and mutual capacitances
“per unit length as indicated. (b) Network equivalent to the netwOrk
of Fig. 4(a) consisting oftwo groups of coupled linfw.
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wig. 5. Two coupled lines connected to four nodes of a field of 2n nodes.

$/11” = ‘VII y.”,’ = ynn

yi$~ +yii~f = ?(Ci’ + Ci-l, i + Ci” + Ct, i+l) = yit (8)

one obtains thematrix given in (3).
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Fig. 1. Different schemes for a DFB surface acoustic wave oscillator.
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Fig. 2. Grating cell. r, is the reflection from a vertical surface elevation
and r z is the reflection from the vertical surface depression.

Distributed Feedback Acoustic Surface Wave Oscillator

CHARLES ELACHI

Abstract—The application of the distributed feedback concept

to generate acoustic surface waves is discussed. It is shown that

surface corrugation of the piezoelectric boundary in a semiconductor-

piezoelectric surface acoustic wave amplifier could lead to self-

sustsined oscillation.

I. INTRODUCTION

The distributed feedback (DFB ) concept has been recently used

in the development of thin-film lasers [1 ]–[3], and its characteristics
were the subject of many publications [4 ]– [7 ]. The basic idea is to
replace the reflecting mirrors at the end of an amplifying medium

by a Bragg grating throughout the medium which would generate
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a distributed feedback. In Fig. 1 we show a number of possible
configurations which can be used for acoustic surface wave generation

by having distributed feedback in a piezoelectric-semiconductor or
acoustic surface wave amplifier. The distributed Bragg grating

could consist of surface corrugation or periodic perturbation of any

parameter which would affect the acoustic wave, electrostatic wave,

or drifting charges. In this letter, we will use a simple model to
evaluate the f eesibility of a DFB surface acoustic wave oscillator

using the scheme in Fig. 1(a).

II. COUPLING COEFFICIENT

The feedback efficiency is expressed by the coupling coefficient

between a forward and a backward wave. Let us consider a surface
wave, of wavelength X, propagating on a corrugated surface [Fig.

2 (a)] where h <<x and A = ?/2 (i.e., Bragg condition). Let rl be
the reflection coefficient when the wave encounters a vertical surface

elevation [Fig. 2(b) ] and r~ the reflection coefficient at a vertical
surface depression [Fig. 2(c) ]. The reflection coefficient of one

grating cell is then:

R = rl exp [i(2mZ/A)] + r~exp [–i(2ml/X)] = i(rl - r,) (1)

where we assumed d = A/2 = k/4, and that \ rl I and I rj I are small
so that multiple reflections can be ignored. RR* represents the energy
transferred from the forward wave to the backward wave over a
length A. Thus the coupling coefficient is:

X = R/A = i~r, – rs)/A = 2i~r, – r,)/L [2)


